Importancia de las bacterias ácido lácticas como productoras de exopolisacáridos

Autores/as

  • Hillary Alexa Flores-Maciel Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México/ Instituto Tecnológico de Durango Blvr. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya. 34080 Durango, Durango, México
  • Itza Nallely Cordero-Soto Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México/ Instituto Tecnológico de Durango Blvr. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya. 34080 Durango, Durango, México https://orcid.org/0000-0002-8677-3025
  • Raúl E. Martínez-Herrera https://orcid.org/0000-0002-7233-3598
  • Luz Araceli Ochoa-Martínez Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México/ Instituto Tecnológico de Durango Blvr. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya. 34080 Durango, Durango, México https://orcid.org/0000-0001-9105-7958
  • Olga Miriam Rutiaga-Quiñones Tecnológico Nacional de México/Instituto Tecnológico de Durango https://orcid.org/0000-0002-2832-1688

DOI:

https://doi.org/10.59741/agraria.v21i2.38

Palabras clave:

alimentos, salud, actividad biológica, exopolisacáridos

Resumen

Las bacterias ácido-lácticas (BAL) son microorganismos de gran importancia para la industria de alimentos y para la salud. Inicialmente estos microorganismos se utilizaron principalmente para conservar alimentos, sin embargo, a través de los años se ha estudiado su potencial actividad biológica y la producción de compuestos con potencial bioactivo, como el caso de los exopolisacáridos (EPS). Los EPS son polisacáridos presentes fuera de la pared celular microbiana con una composición heterogénea basada principalmente en carbohidratos y una matriz proteica. Son sintetizados por diversos microorganismos como el caso de las microalgas, bacterias, hongos y levaduras, como una respuesta al estrés ambiental. En alimentos los EPS se emplean como agentes de viscosidad, estabilizadores, emulsionantes, gelificantes, entre otros. Por otro lado, algunos EPS han mostrado propiedades inmunomoduladoras, reducción de colesterol, anticancerígenas, anticoagulantes e interfieren con el crecimiento de patógenos, por lo que son de gran interés para el área de salud.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmed R., Siddiqui K., Arman M., Ahmed N. 2012. Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydrate Polymers 90 (1):441–6. https://doi.org/10.1016/j.carbpol.2012.05.063 DOI: https://doi.org/10.1016/j.carbpol.2012.05.063

Andhare P., Chauhan K., Dave M., Pathak, H. 2014. Microbial exopolysaccharides: Advances in Applications and Future Prospects. Biotechnology 3:1-22. https://doi.org/10.13140/RG.2.1.3518.4484

Ayivi R. D., Gyawali R., Krastanov A., Aljaloud S. O., Worku M., Tahergorabi R., Claro da Silva R. & Ibrahim S. A. 2020. Lactic Acid Bacteria: Food Safety and Human Health Applications. Dairy. 1(3): 202–232. https://doi.org/10.3390/dairy1030015 DOI: https://doi.org/10.3390/dairy1030015

Badel S., Bernardi T. Michaud P. 2011. New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances. 29(1): 54–66. https://doi.org/10.1016/j.biotechadv.2010.08.011 DOI: https://doi.org/10.1016/j.biotechadv.2010.08.011

Behare P. V., Singh R., Nagpal R. Rao K. H. 2013. Exopolysaccharides producing Lactobacillus fermentum strain for enhancing rheological and sensory attributes of low-fat dahi. Journal of Food Science and Technology. 50(6): 1228–1232. https://doi.org/10.1007/s13197-013-0999-6 DOI: https://doi.org/10.1007/s13197-013-0999-6

Crescenzi V. 1995. Microbial polysaccharides of applied interest: ongoing research activities in Europe. Biotechnology Progress, 11(3), 251–259. https://doi.org/10.1021/bp00033a002 DOI: https://doi.org/10.1021/bp00033a002

Donot F., Fontana A., Baccou J. C. Schorr-Galindo S. 2012. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers. 87(2): 951–962. https://doi.org/10.1016/j.carbpol.2011.08.083 DOI: https://doi.org/10.1016/j.carbpol.2011.08.083

Finore I., Di Donato P., Mastascusa V., Nicolaus B. Poli A. 2014. Fermentation Technologies for the Optimization of Marine Microbial Exopolysaccharide Production. Marine Drugs. 12(5): 3005–3024. https://doi.org/10.3390/md12053005 DOI: https://doi.org/10.3390/md12053005

Franz G. 1986. Polysaccharides in pharmacy. Adv Polymer Sci 76: 1-30. https://doi.org/10.1007/3-540-15830-8_1 DOI: https://doi.org/10.1007/3-540-15830-8_1

Freitas F., Alves D., Reis, M. 2014. Microbial polysaccharide-based membranes: Current and future applications. Journal of Applied Polymer Science 40047:1–1. https://doi.org/10.1002/app.40047 DOI: https://doi.org/10.1002/app.40047

Galindo-Rodríguez K. Y., Cruz-Nicolas G. 2016. Formulación de un medio de cultivo idóneo para la producción de bacterias acido lácticas a partir de desechos agroindustriales. Mexican Journal of Biotechnology. 1(1): 60–66.

Giraffa G., Chanishvili N. Widyastuti Y. 2010. Importance of lactobacilli in food and feed biotechnology. Research in Microbiology. 161(6): 480–487. https://doi.org/10.1016/j.resmic.2010.03.001 DOI: https://doi.org/10.1016/j.resmic.2010.03.001

Hernández-Rosas F., Castilla-Marroquín J. D., Loeza-Corte J. M., Lizardi-Jiménez M. A. Martínez R. H. 2021. The importance of carbon and nitrogen sources on exopolysaccharide synthesis by lactic acid bacteria and their industrial importance. Revista Mexicana de Ingeniería Química. 20(3): Bio2429. DOI: https://doi.org/10.24275/rmiq/Bio2429

Hooper L. V. Macpherson A. J. 2010. Immune Adaptations That Maintain Homeostasis with the Intestinal Microbiota. Nature Reviews Immunology. 10(3): 159–169. https://doi.org/10.1038/nri2710 DOI: https://doi.org/10.1038/nri2710

Kulicke W., Heinze T. 2005. Improvements in Polysaccharides for use as Blood Plasma Expanders. Macromolecular Symposia, 231(1), 47–59. https://doi.org/10.1002/masy.200590024 DOI: https://doi.org/10.1002/masy.200590024

Liu J. R., Liu C. T., Edwards E. A. Liss S. N. 2006. Effect of phosphorus limitation on microbial floc structure and gene expression in activated sludge. Water Science and Technology. 54(1): 247–255. https://doi.org/10.2166/wst.2006.393 DOI: https://doi.org/10.2166/wst.2006.393

Liu Y., Fang H. H. 2003. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Critical Reviews in Environmental Science and Technology. 33(3): 237–273. https://doi.org/10.1080/10643380390814479 DOI: https://doi.org/10.1080/10643380390814479

Mazlyn M. M., Nagarajah L.H.L., Fatimah A., Norimah A.K., Goh K. L. 2013. Effects of a probiotic fermented milk on functional constipation a randomized, double-blind, placebo-controlled study. Journal of Gastroenterology and Hepatology. 28(7): 1141–1147. https://doi.org/10.1111/jgh.12168 DOI: https://doi.org/10.1111/jgh.12168

Muhammadi, Afzal M. 2014. Optimization of water absorbing exopolysaccharide production on local cheap substrates by Bacillus strain CMG1403 using one variable at a time approach. Journal of Microbiology. 52(1): 44–52. https://doi.org/10.1007/s12275-014-2622-6 DOI: https://doi.org/10.1007/s12275-014-2622-6

Nouha K., Kumar R. S., Balasubramanian S., Tyagi R. D. 2018. Critical review of EPS production, synthesis and composition for sludge flocculation. Journal of Environmental Sciences. 66: 225–245. https://doi.org/10.1016/j.jes.2017.05.020 DOI: https://doi.org/10.1016/j.jes.2017.05.020

Nwosu I. G., Abu G. O., Agwa K. O. 2019. Production of Microbial Exopolysaccharide by Cost-effective Medium Opimization Method. Journal of Advances in Microbiology. 19(2): 1–13. https://doi.org/10.9734/jamb/2019/v19i230189 DOI: https://doi.org/10.9734/jamb/2019/v19i230189

Pal A., Paul A. K. 2013. Optimization of Cultural Conditions for Production of Extracellular Polymeric Substances (EPS) by Serpentine Rhizobacterium Cupriavidus pauculus KPS 201. Journal of Polymers. 2013: 1–7. https://doi.org/10.1155/2013/692374 DOI: https://doi.org/10.1155/2013/692374

Patel A., Prajapati, J. 2013. Food and Health Applications of Exopolysaccharides produced by Lactic acid Bacteria. Advances in Dairy Research, 01(02). http://dx.doi.org/10.4172/2329-888X.1000107 DOI: https://doi.org/10.4172/2329-888X.1000107

Riaz Rajoka M. S., Wu Y., Mehwish H. M., Bansal M., Zhao L. 2020. Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends in Food Science & Technology. 103: 36–48. https://doi.org/10.1016/j.tifs.2020.06.003 DOI: https://doi.org/10.1016/j.tifs.2020.06.003

Ruas-Madiedo P., de los Reyes-Gavilán C. G. 2005. Invited Review: Methods for the Screening, Isolation, and Characterization of Exopolysaccharides Produced by Lactic Acid Bacteria. Journal of Dairy Science. 88(3): 843–856. https://doi.org/10.3168/jds.S0022-0302(05)72750-8 DOI: https://doi.org/10.3168/jds.S0022-0302(05)72750-8

Ruas-Madiedo P., Abraham A., Mozzi F., de los Reyes-Gavilán, C. 2008. Functionality of exopolysaccharides produced by lactic acid bacteria, In: Molecular aspects of lactic acid bacteria for traditional and new applications. B. Mayo, P. López, and G. Pérez-Martín (Ed.), 137-166, Research Signpost, ISSN 978-81-308-0250-3, Kerala, India

Saito T. 2004. Selection of useful probiotic lactic acid bacteria from the Lactobacillus acidophilus group and their applications to functional foods. Animal Science Journal. 75(1): 1–13. https://doi.org/10.1111/j.1740-0929.2004.00148.x DOI: https://doi.org/10.1111/j.1740-0929.2004.00148.x

Schiano Moriello V., Lama L., Poli A., Gugliandolo C., Maugeri T. L., Gambacorta A., Nicolaus B. 2003. Production of exopolysaccharides from a thermophilic microorganism isolated from a marine hot spring in flegrean areas. Journal of Industrial Microbiology & Biotechnology. 30(2): 95–101. https://doi.org/10.1007/s10295-002-0019-8 DOI: https://doi.org/10.1007/s10295-002-0019-8

Sheng G.P., Yu H.Q. & Li X.Y. 2010. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances. 28(6): 882–894. https://doi.org/10.1016/j.biotechadv.2010.08.001 DOI: https://doi.org/10.1016/j.biotechadv.2010.08.001

Singha T. 2012. Microbial extracellular polymeric substances: Production, isolation and applications. IOSR J Pharm 2 (2):276–81. https://doi.org/10.9790/3013-0220276281 DOI: https://doi.org/10.9790/3013-0220276281

Talbi, C., Elmarrakchy, S., Youssfi, M., Bouzroud, S., Belfquih, M., Sifou, A., ... & Bourais, I. (2023). Bacterial exopolysaccharides: from production to functional features. Progress In Microbes & Molecular Biology, 6(1). , 6, 1; a0000384. doi: 10.36877/pmmb.a0000384 DOI: https://doi.org/10.36877/pmmb.a0000384

Vu B., Chen M., Crawford R., Ivanova, E. (2009). Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules, 14(7), 2535–2554. https://doi.org/10.3390/molecules14072535 DOI: https://doi.org/10.3390/molecules14072535

Wang J., Salem D. R., Sani R. K. 2019. Extremophilic exopolysaccharides: A review and new perspectives on engineering strategies and applications. Carbohydrate Polymers. 205: 8–26. https://doi.org/10.1016/j.carbpol.2018.10.011 DOI: https://doi.org/10.1016/j.carbpol.2018.10.011

Welman A. D., Maddox S. I. 2003. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in Biotechnology. 21(6): 269–274. https://doi.org/10.1016/s0167-7799(03)00107-0 DOI: https://doi.org/10.1016/S0167-7799(03)00107-0

Widyastuti Y., Rohmatussolihat, Febrisiantosa A. 2014. The Role of Lactic Acid Bacteria in Milk Fermentation. Food and Nutrition Sciences. 5(4): 435–442. http://doi.org/10.4236/fns.2014.54051 DOI: https://doi.org/10.4236/fns.2014.54051

Yang Y., Feng F., Zhou Q., Zhao F., Du R., Zhou Z., Han Y. 2018. Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste. International Journal of Biological Macromolecules. 114: 529–535. https://doi.org/10.1016/j.ijbiomac.2018.03.162 DOI: https://doi.org/10.1016/j.ijbiomac.2018.03.162

Zheng J., Wittouck S., Salvetti E., Franz C.M., Harris H. M., Mattarelli P., Watanabe K. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematyc and Evolutionary Microbiology. 70: 2782–2858. https://doi.org/10.1099/ijsem.0.004107 DOI: https://doi.org/10.1099/ijsem.0.004107

Zhou Y., Cui Y., Qu X. 2019. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate Polymers. 207: 317–332. https://doi.org/10.1016/j.carbpol.2018.11.093 DOI: https://doi.org/10.1016/j.carbpol.2018.11.093

Descargas

Publicado

25-01-2024

Cómo citar

Flores-Maciel, H. A., Cordero-Soto, I. N., Martínez-Herrera, R. E., Ochoa-Martínez, L. A., & Rutiaga-Quiñones, O. M. (2024). Importancia de las bacterias ácido lácticas como productoras de exopolisacáridos. Agraria, 21(2), 5–11. https://doi.org/10.59741/agraria.v21i2.38

Número

Sección

Artículos de divulgación