Calibración de DSSAT (Decision Support System for Agrotechnology Transfer) para tres cultivares de maíz (Zea mays L.) en el sur de Nuevo León, México
DOI:
https://doi.org/10.59741/agraria.v8i2.452Keywords:
Maize, genetic coefficients, simulation models, DSSATAbstract
Calibration of DSSAT (Decision Support System for Agrotechnology Transfer) for Three Cultivars of Maize (Zea mays L.) in the South of Nuevo Leon, Mexico. Simulation models are an alternative for prediction of crop behavior and an important research tool to shorten this process, even though this doesn´t replace field experiments. The objective of this assay was to calibrate the DSSAT program (Decision Support System for Agrotechnology Transfer) for three maize cultivars. This work was performed at the experimental station of the Universidad Autónoma Agraria Antonio Narro (UAAAN), located at Navidad, Galeana, N. L. The evaluated cultivars were: AN447, AN388 and A7573, the sowing was performed on May 5 and harvest on October 26, 2007, with a fertilizer dose 60–60–60. The experimental design was a randomized blocks one with three replications. The evaluated variables were: Partial Dry Matter (MSP), Partial Dry Matter of leaf (MSPH), Partial Dry Matter of Stem (MSPT), Partial Dry Matter of Grain (MSPG) and Leaf Area Index (IAF). The genetic coefficients obtained for calibration are: AN447 P1 = 355, P2 = 0.700, P5 = 540, G2 = 430, G3 = 12 and PHINT = 80; AN388 P1 = 375, P2 = 0.500, P5 = 500, G2 = 450, G3 = 11 and PHINT = 75; A7573 = 365 P1, P2 = 0.400, P5 = 500, G2 = 380, G3 = 8 and PHINT = 80. In general, DSSAT may be calibrated for maize and produce acceptable results.
Downloads
References
Cabelguenne M., J. L. Charpenteau, C. A. Jones, J. R. Marty, J. P. Rellier. 1986. Conduite des systèmes de grande culture et prévision des rendements: tentative de modélisation. pp. 125-1 32. In: II. Etalonnage du modèle: résultats et perspectives. C.R. Acade. Agric. Fr. 72.
Jones, J. W. 1993. Decision support system for agricul tural development. pp: 459-472. In: Systems approaches to agricultural development. Penning de Vriets F. W. T., P. S. y K. Teng Metselaar (Eds.). Kluwer Aca demic Publishers. Dordrecht, Netherlands. 560 p. DOI: https://doi.org/10.1007/978-94-011-2842-1_28
Jones, J. W., G. Y. Tsuji, G. Hoogenboom, L. A. Hunt, P. K. Thornton, P. W. Wilkens, D. T. Imamura, W. T. Bowen y U. Singh. 1998. Decision support system for agrotechnology transfer: DSSAT v3. pp: 157-176. In: Tsuji, G. Y., G. Hoogenboom, P. K. Thornton (Eds.). Understanding options for agricultural production. Kluwer Academic Publishers. London, Great Britain. 325 p. DOI: https://doi.org/10.1007/978-94-017-3624-4_8
Mendoza H., J. M. 1983. Diagnostico climático para la zona de influencia inmediata de la UAAAN. Departamento de Agrometeorología. Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coah., México. 615 p.
Raiput, R.P. 1980. Response of soybean crop to climate and soil environments. Ph. D. Thesis, IARI, New Delhi, India.
Téllez O., O. S., R. Rodríguez G., D. Jasso C. y E. Peña C. 2000. Validación del Modelo EPIC, para simular la medición de rasgos agronómicos en el cultivo de maíz bajo diferentes condiciones de humedad en el suelo. Agraria 16 (1): 27-46, Buenavista, Saltillo, Coah. DOI: https://doi.org/10.59741/agraria.v16i1.261
Uehara, G. y G. Y. Tsuji. Thorton. 1998. Overview of IBSNAT. pp: 1-7. In: Tsuji G. Y., G Hoogemboom, Eds). Understanding Options for Agricultural Production. Kluwer Academic Publishers. London, Great Britain. 325 p. DOI: https://doi.org/10.1007/978-94-017-3624-4_1
Whisler, F. D., D. N. Acock, R. E. Baker, H. F. Fye, J. R. Hodges, H. E. Lambert, J. M. Lemmon, Mckinion y V. R. Reddy. 1986. Crop simulation models in agronomic systems. Adv. Agron. 40: 141 – 208. DOI: https://doi.org/10.1016/S0065-2113(08)60282-5
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
PLUMX Metrics