Desarrollo de un sistema bioelectroquímico empleado para el crecimiento de Stevia rebaudiana
DOI:
https://doi.org/10.59741/agraria.v19iSE1.33Palabras clave:
altura de planta, bioelectricidad, celda de combustible microbiana vegetal (P-MFC), compuestos orgánicos, diámetro de talloResumen
En este estudio se evaluó la producción de bioelectricidad y el crecimiento de la
planta mediante una celda de combustible microbiana vegetal (P-MFC) durante
un periodo de 43 días y de tres meses, respectivamente. La P-MFC se construyó
con un cantarito, el cual tuvo dos compartimentos: ánodo y cátodo. El ánodo se
colocó cerca de las raíces de la planta a profundidad de 15 cm; posteriormente,
las P-MFC se inocularon con 642.86 mL de orina de diferentes animales domésticos. La mayor producción de bioelectricidad (46.97 ± 0.67 mW m-2) se obtuvo
con la orina de caprino (P-MFC-3). Para las variables de crecimiento, el testigo (PMFC-1*, sin inocular) presentó la mayor altura (p < 0.05), y la P-MFC-3 (orina de
caprino) un mayor número de brotes y diámetro, respectivamente (p < 0.05). El
desarrollo del sistema P-MFC es una alternativa viable para la generación de energía sostenible y renovable.
Descargas
PLUMX Metrics
Citas
Apollon, W., A.I. Luna-Maldonado, S.-K. Kamaraj, J.A. Vidales-Contreras, H. Rodríguez-Fuentes, J.F. GómezLeyva, J. Aranda-Ruíz. 2021. Progress and recent trends in photosynthetic assisted microbial fuel cells: A review. Biomass Bioenergy 148(5):106028. DOI: https://doi.org/10.1016/j.biombioe.2021.106028
Apollon, W., S.-K. Kamaraj, H. Silos-Espino, C. Perales-Segovia, L.L. Valera-Montero, V.A. Maldonado-Ruelas, M.A. Vázquez-Gutiérrez, R.A. Ortiz-Medina, S. Flores-Benítez, J.F. Gómez-Leyva. 2020. Impact of Opuntia species plant bio-battery in a semi-arid environment: demonstration of their applications. Appl. Energy 279(23):115788. DOI: https://doi.org/10.1016/j.apenergy.2020.115788
Dai, J., W. Tang, Y. Zheng, H.R. Mackey, H. Kwong. 2014. An exploratory study on Seawater-Catalysed Urine Phosphorus Recovery (SUPR). Water Res 66(19):75-84. Dewis J. and F. Freitas. 1970. Physical and chemical methods of soil and water analysis. FAO, Soils Bulletin Nº 10, Rome, Italy, 275 p. DOI: https://doi.org/10.1016/j.watres.2014.08.008
Helder, M., D. P. B. T. B. Strik, H.V.M. Hamelers, R.C.P. Kuijken, C.N.J. Buisman, 2012. New plantgrowth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresour. Technol. 104(2):417-423. DOI: https://doi.org/10.1016/j.biortech.2011.11.005
Helder, M., D. P. B. T. B. Strik, R.A. Timmers, S.M. Raes, H.V.M. Hamelers, C.N.J. Buisman, 2013. Resilience of roof-top plant-microbial fuel cells during dutch winter. Biomass Bioenergy 51(4):1–7. DOI: https://doi.org/10.1016/j.biombioe.2012.10.011
INEGI. 2017. Anuario estadístico y geográfico de Nuevo León. Instituto Nacional de Estadística y Geografía. Gobierno del Estado de Nuevo León, 614 pp.
Kabutey, F. T., Q. Zhao, L. Wei, J. Ding, P. Antwi, F.K. Quashie, W. Wang. 2019. An overview of plant microbial fuel cells (PMFCs):
Configurations and applications. Renewable Sustainable Energy Rev 110(12):402-414.
Logan B. E. and J.M. Regan. 2006. Electricity producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512-518. DOI: https://doi.org/10.1016/j.tim.2006.10.003
Nitisoravut R. and R. Regmi. 2017. Plant microbial fuel cells: A promising biosystems engineering, Renewable Sustainable Energy Rev 76(10):81-89. DOI: https://doi.org/10.1016/j.rser.2017.03.064
Obata, O., M.J. Salar-Garcia, J. Greenman, H. Kurt, K. Chandran, I. Ieropoulos, 2020. Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. J. Environ. Manage 258(6):109992. DOI: https://doi.org/10.1016/j.jenvman.2019.109992
Regmi, R., R. Nitisoravut, J. Ketchaimongkol, 2018. A decade of plant-assisted microbial fuel cells: looking back and moving forward. Biofuel Bioprod Bior 9(5):605-612. DOI: https://doi.org/10.1080/17597269.2018.1432272
Salar-García, M. J., O. Obata, H. Kurt, K. Chandran, J. Greenman, I.A. Ieropoulos, 2020. Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms 8(12):1921. DOI: https://doi.org/10.3390/microorganisms8121921
Slavin, M. 1978. Atomic Absorption Spectroscopy. John Wiley & Sons, New York.
Sophia C. and S. Sreeja. 2017. Green energy generation from Plant Microbial Fuel Cells (PMFC) using compost and a novel clay separator. Sustain. Energy Technol. Assess 21(3):59-66. DOI: https://doi.org/10.1016/j.seta.2017.05.001
Spencer, D.F., P.S. Liow, W.K. Chan, G.G. Ksander, K.D. Getsinger. 2006. Estimating Arundo donax shoot biomass. Aquat. Bot, 84(3), 272-276. DOI: https://doi.org/10.1016/j.aquabot.2005.11.004
Strik, D. P. B. T. B., H.V.M. Hamelers, F.H. Jan Snel, C.J.N. Buisman. 2008. Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res 32(9):870-876. DOI: https://doi.org/10.1002/er.1397
Strik, D. P. B. T. B., R.A. Timmers, M. Helder, K.J. Steinbusch, H.V. Hamelers, C.J.N. Buisman. 2011. Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol 29(1):41-49. DOI: https://doi.org/10.1016/j.tibtech.2010.10.001
Sudirjo, E., P. de Jager, C.J.N. Buisman, D. P. B. T. B. Strik. 2019. Performance and Long-Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia. Sensor 19(21):46-47. DOI: https://doi.org/10.3390/s19214647
Tapia, N. F., R. Claudia, A.B. Carlos, T.V. Ignacio. 2017. Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecol. Eng 108(11):203-210. DOI: https://doi.org/10.1016/j.ecoleng.2017.08.017
Wetser, K., D. Kim, C.J.N. Buisman, D.P.B.T.B. Strik. 2017. Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Appl. Energy 185(1):642-649. DOI: https://doi.org/10.1016/j.apenergy.2016.10.122
You, J., J. Greenman, C. Melhuish, I. Ieropoulos. 2015. Electricity generation and struvite recovery from human urine using microbial fuel cells. J. Chem. Technol. Biotechnol 91(3):647-654. DOI: https://doi.org/10.1002/jctb.4617
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.