Desarrollo de un sistema bioelectroquímico empleado para el crecimiento de Stevia rebaudiana

Autores/as

  • Wilgince Apollon Facultad de Agronomía, Universidad Autónoma de Nuevo León. Av. Francisco Villa S/N, col. Ex Hacienda El Canadá, CP 66050. Gral. Escobedo, N.L. México.
  • Alejandro Isabel Luna-Maldonado Facultad de Agronomía, Universidad Autónoma de Nuevo León. Av. Francisco Villa S/N, col. Ex Hacienda El Canadá, CP 66050. Gral. Escobedo, N.L. México.
  • Sathish-Kumar Kamaraj Laboratorio de Medio Ambiente Sostenible, TecNM-Instituto Tecnológico El Llano, Km 18, Carretera Aguascalientes-San Luis Potosí, CP 20330, El Llano, Aguascalientes, México.
  • Juan Antonio Vidales-Contreras Facultad de Agronomía, Universidad Autónoma de Nuevo León. Av. Francisco Villa S/N, col. Ex Hacienda El Canadá, CP 66050. Gral. Escobedo, N.L. México.
  • Humberto Rodríguez-Fuentes Facultad de Agronomía, Universidad Autónoma de Nuevo León. Av. Francisco Villa S/N, col. Ex Hacienda El Canadá, CP 66050. Gral. Escobedo, N.L. México.
  • Juan Florencio Gómez-Leyva Laboratorio de Biología Molecular, TecNM-Instituto Tecnológico de Tlajomulco. Km 10, Carretera a San Miguel Cuyutlán, CP 45640. Tlajomulco de Zúñiga, Jalisco, México.

DOI:

https://doi.org/10.59741/agraria.v19iSE1.33

Palabras clave:

altura de planta, bioelectricidad, celda de combustible microbiana vegetal (P-MFC), compuestos orgánicos, diámetro de tallo

Resumen

En este estudio se evaluó la producción de bioelectricidad y el crecimiento de la
planta mediante una celda de combustible microbiana vegetal (P-MFC) durante
un periodo de 43 días y de tres meses, respectivamente. La P-MFC se construyó
con un cantarito, el cual tuvo dos compartimentos: ánodo y cátodo. El ánodo se
colocó cerca de las raíces de la planta a profundidad de 15 cm; posteriormente,
las P-MFC se inocularon con 642.86 mL de orina de diferentes animales domésticos. La mayor producción de bioelectricidad (46.97 ± 0.67 mW m-2) se obtuvo
con la orina de caprino (P-MFC-3). Para las variables de crecimiento, el testigo (PMFC-1*, sin inocular) presentó la mayor altura (p < 0.05), y la P-MFC-3 (orina de
caprino) un mayor número de brotes y diámetro, respectivamente (p < 0.05). El
desarrollo del sistema P-MFC es una alternativa viable para la generación de energía sostenible y renovable.

Descargas

Los datos de descargas todavía no están disponibles.

PLUMX Metrics

Citas

Apollon, W., A.I. Luna-Maldonado, S.-K. Kamaraj, J.A. Vidales-Contreras, H. Rodríguez-Fuentes, J.F. GómezLeyva, J. Aranda-Ruíz. 2021. Progress and recent trends in photosynthetic assisted microbial fuel cells: A review. Biomass Bioenergy 148(5):106028. DOI: https://doi.org/10.1016/j.biombioe.2021.106028

Apollon, W., S.-K. Kamaraj, H. Silos-Espino, C. Perales-Segovia, L.L. Valera-Montero, V.A. Maldonado-Ruelas, M.A. Vázquez-Gutiérrez, R.A. Ortiz-Medina, S. Flores-Benítez, J.F. Gómez-Leyva. 2020. Impact of Opuntia species plant bio-battery in a semi-arid environment: demonstration of their applications. Appl. Energy 279(23):115788. DOI: https://doi.org/10.1016/j.apenergy.2020.115788

Dai, J., W. Tang, Y. Zheng, H.R. Mackey, H. Kwong. 2014. An exploratory study on Seawater-Catalysed Urine Phosphorus Recovery (SUPR). Water Res 66(19):75-84. Dewis J. and F. Freitas. 1970. Physical and chemical methods of soil and water analysis. FAO, Soils Bulletin Nº 10, Rome, Italy, 275 p. DOI: https://doi.org/10.1016/j.watres.2014.08.008

Helder, M., D. P. B. T. B. Strik, H.V.M. Hamelers, R.C.P. Kuijken, C.N.J. Buisman, 2012. New plantgrowth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresour. Technol. 104(2):417-423. DOI: https://doi.org/10.1016/j.biortech.2011.11.005

Helder, M., D. P. B. T. B. Strik, R.A. Timmers, S.M. Raes, H.V.M. Hamelers, C.N.J. Buisman, 2013. Resilience of roof-top plant-microbial fuel cells during dutch winter. Biomass Bioenergy 51(4):1–7. DOI: https://doi.org/10.1016/j.biombioe.2012.10.011

INEGI. 2017. Anuario estadístico y geográfico de Nuevo León. Instituto Nacional de Estadística y Geografía. Gobierno del Estado de Nuevo León, 614 pp.

Kabutey, F. T., Q. Zhao, L. Wei, J. Ding, P. Antwi, F.K. Quashie, W. Wang. 2019. An overview of plant microbial fuel cells (PMFCs):

Configurations and applications. Renewable Sustainable Energy Rev 110(12):402-414.

Logan B. E. and J.M. Regan. 2006. Electricity producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512-518. DOI: https://doi.org/10.1016/j.tim.2006.10.003

Nitisoravut R. and R. Regmi. 2017. Plant microbial fuel cells: A promising biosystems engineering, Renewable Sustainable Energy Rev 76(10):81-89. DOI: https://doi.org/10.1016/j.rser.2017.03.064

Obata, O., M.J. Salar-Garcia, J. Greenman, H. Kurt, K. Chandran, I. Ieropoulos, 2020. Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. J. Environ. Manage 258(6):109992. DOI: https://doi.org/10.1016/j.jenvman.2019.109992

Regmi, R., R. Nitisoravut, J. Ketchaimongkol, 2018. A decade of plant-assisted microbial fuel cells: looking back and moving forward. Biofuel Bioprod Bior 9(5):605-612. DOI: https://doi.org/10.1080/17597269.2018.1432272

Salar-García, M. J., O. Obata, H. Kurt, K. Chandran, J. Greenman, I.A. Ieropoulos, 2020. Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms 8(12):1921. DOI: https://doi.org/10.3390/microorganisms8121921

Slavin, M. 1978. Atomic Absorption Spectroscopy. John Wiley & Sons, New York.

Sophia C. and S. Sreeja. 2017. Green energy generation from Plant Microbial Fuel Cells (PMFC) using compost and a novel clay separator. Sustain. Energy Technol. Assess 21(3):59-66. DOI: https://doi.org/10.1016/j.seta.2017.05.001

Spencer, D.F., P.S. Liow, W.K. Chan, G.G. Ksander, K.D. Getsinger. 2006. Estimating Arundo donax shoot biomass. Aquat. Bot, 84(3), 272-276. DOI: https://doi.org/10.1016/j.aquabot.2005.11.004

Strik, D. P. B. T. B., H.V.M. Hamelers, F.H. Jan Snel, C.J.N. Buisman. 2008. Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res 32(9):870-876. DOI: https://doi.org/10.1002/er.1397

Strik, D. P. B. T. B., R.A. Timmers, M. Helder, K.J. Steinbusch, H.V. Hamelers, C.J.N. Buisman. 2011. Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol 29(1):41-49. DOI: https://doi.org/10.1016/j.tibtech.2010.10.001

Sudirjo, E., P. de Jager, C.J.N. Buisman, D. P. B. T. B. Strik. 2019. Performance and Long-Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia. Sensor 19(21):46-47. DOI: https://doi.org/10.3390/s19214647

Tapia, N. F., R. Claudia, A.B. Carlos, T.V. Ignacio. 2017. Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecol. Eng 108(11):203-210. DOI: https://doi.org/10.1016/j.ecoleng.2017.08.017

Wetser, K., D. Kim, C.J.N. Buisman, D.P.B.T.B. Strik. 2017. Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Appl. Energy 185(1):642-649. DOI: https://doi.org/10.1016/j.apenergy.2016.10.122

You, J., J. Greenman, C. Melhuish, I. Ieropoulos. 2015. Electricity generation and struvite recovery from human urine using microbial fuel cells. J. Chem. Technol. Biotechnol 91(3):647-654. DOI: https://doi.org/10.1002/jctb.4617

Descargas

Publicado

02-06-2022

Cómo citar

Apollon, W., Luna-Maldonado, A. I., Kamaraj, S.-K., Vidales-Contreras, J. A., Rodríguez-Fuentes, H., & Gómez-Leyva, J. F. (2022). Desarrollo de un sistema bioelectroquímico empleado para el crecimiento de Stevia rebaudiana. Agraria, 19(SE1), 94. https://doi.org/10.59741/agraria.v19iSE1.33

Número

Sección

Artículos de divulgación

Artículos más leídos del mismo autor/a