Modelos de simulación para cereales forrajeros en el sur de Nuevo León, México

Authors

  • Misael Rodríguez Arvizu1 Departamento de Recursos Naturales Renovables. Universidad Autónoma Agraria Antonio Narro
  • Heriberto Díaz Solís Departamento de Recursos Naturales Renovables. Universidad Autónoma Agraria Antonio Narro
  • Eduardo Aizpuru García Departamento de Nutrición y Alimentos. Universidad Autónoma Agraria Antonio Narro
  • Ramiro López Trujillo Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro
  • Víctor Manuel Zamora Villa Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro.

DOI:

https://doi.org/10.59741/agraria.v7i1-2-3.431

Keywords:

prediction, calibration, barley, wheat, triticale, DSSAT

Abstract

The use of simulation models in agriculture is an alternative in the decision making process, in order to lower the researching costs, and to help reducing economic and production risks, since they summarize interactions among the factors of a productive process. In fodder cultures they are a tool useful to predict the behavior of both, growth and yield, and to help understanding the physiological plant-atmosphere relations. This work was per formed with the aim of calibrating the DSSAT 4.0.2.0 software for barley, wheat and triticale cultures in the South of the Mexican state of Nuevo León. The field experiment was established in the experimental station of Navidad, in Galeana, N. L., Mexico, belonging to the Autonomous Agrarian University Antonio Narro (UAAAN). The genetic materials to be evaluated were: NARRO-92-05 barley (Hordeum vulgare), AN-239 wheat (Triti cum aestivum), and AN-125, and AN-31-B Eronga triticale (X: Triticosecale Wittmack) under a completely randomized block design. The sowing took place in the spring-summer cycles 2007 and 2008. Program DSSAT 4.0.2.0 was parameterized within each of its modules and later on it was calibrated by the manipulation of genetic coefficients. The calibration and validation of the barley, wheat, and triticale models in the DSSAT 4.0.2.0 software for the genotypes and region of study, were performed satisfactorily, and the models had the capacity to simulate values with a good level of precision, when compared to the observed ones. It may, so, be concluded that, the usage of simulation models of DSSAT 4.0.2.0 software, is suitable to predict growth and yield of fodder cultures.

Downloads

Download data is not yet available.

References

Ewert, F., J. Porter y B. Honermeier. 1996. Use of AFRCWHEAT2 to predict the development of main stem and tillers in winter triticale and winter wheat in North East Germany. Eur. J. Agron. 5:89-103. DOI: https://doi.org/10.1016/S1161-0301(96)02012-6

Ghaffari, A., H. F. Cook y H. C. Lee. 2001. Simulating winter wheat yields under temperate conditions: ex ploring different management scenarios. Eur. J. Agron. 15:231-240. DOI: https://doi.org/10.1016/S1161-0301(01)00111-3

Gijsman, A. J., G. Hoogenboom, W. J. Parton y P. C. Kerridge. 2002. Modifying DSSAT crop models for low input agricultural systems using a soil organic matter– residue module from CENTURY. Agron. J. 94:462–474. DOI: https://doi.org/10.2134/agronj2002.4620

Grant, W. E., E. K. Pedersen y S. L. Marín. 1997. Ecol ogy and natural resource management: systems analy sis and simulation. John Wiley & Sons Inc. New York, U.S.A. pp. 320.

Hoogenboom, G., J. W. Jones, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, A. J. Gijsman, P. W. Wilkens, U. Singh y W. T. Bowen. 2003. DSSAT v4 Cropping system simulation model. In: Hoogenboom G., J. W. Jones, C. H. Porter, P. W. Wilkens, K. J. Boote, W. D. Batchelor, L. A. Hunt, y G. Y. Tsuji (Eds). Decision Support System for Agrotechnology Transfer Version 4.0. Volume 1: Overview. University of Ha waii, Honolulu, HI.

Hunt, L. A. y K. J. Boote. 1998. Data for model opera tion, calibration, and evaluation. pp. 9-39. In: Tsuji G. Y., G Hoogemboom. Thorton.(Eds). Understanding options for agricultural production. Kluwer Academic Publishers. Great Britain. DOI: https://doi.org/10.1007/978-94-017-3624-4_2

Langensiepen, M., H. Hanus, P. Schoop y W. Grasle. 2008. Validating CERES-wheat under North-German envi ronmental conditions. Agric. Systems 97:34-47. DOI: https://doi.org/10.1016/j.agsy.2007.11.001

Moreno-Sotomayor, A. y A. Weiss. 2004. Improvements in the simulation of kernel number and grain yield in CERES-Wheat. Field Crops Res. 88: 157-169. DOI: https://doi.org/10.1016/j.fcr.2003.12.003

Odum, T. H y E. C. Odum. 2000. Modeling for all scales. Academic Press. San Diego, California. USA. pp. 457. Rodríguez, A. N. T., James, L. W. Odell y J. B. Daniel. 1990. AWheat grazing systems model for de US south ern plains: Part I-Model description and performance. Agric. Systems 33:41-59. DOI: https://doi.org/10.1016/0308-521X(90)90069-3

Saseendran, S. A., D. C. Nielsen, L. Ma, L. R. Ahuja y A. D. Halvorson. 2004. Modeling Nitrogen Management Effects on Winter Wheat Production Using RZWQM and CERES-Wheat. Agron. J. 96:615-630. DOI: https://doi.org/10.2134/agronj2004.0615

Travasso, M. I. y G. O. Magrin. 1998. Utility of CERES Barley under Argentine conditions. Field Crops Res. 57:329-333 DOI: https://doi.org/10.1016/S0378-4290(98)00079-3

Uehara, G. y G. Y. Tsuji. 1998. Overview of IBSNAT. pp. 1-7.In: Tsuji G. Y., G Hoogemboom. Thorton (Eds). Understanding options for agricultural production. Kluwer Academic Publishers. Great Britain. DOI: https://doi.org/10.1007/978-94-017-3624-4_1

Downloads

Published

2010-12-15

Issue

Section

Artículos de divulgación

How to Cite

Modelos de simulación para cereales forrajeros en el sur de Nuevo León, México. (2010). Agraria, 7(1-2-3), 6-16. https://doi.org/10.59741/agraria.v7i1-2-3.431

  PLUMX Metrics

Most read articles by the same author(s)

1 2 > >>