Agave Nanocellulose:

Rediscovering the Value of Ancestral Mexican Plants Beyond Tequila and Mezcal

Authors

DOI:

https://doi.org/10.59741/agraria.v22i3.653

Keywords:

Maguey, cellulose, circular economy, bioplastics, revalorization

Abstract

Nanocellulose is an amazing material that can be obtained by processing plant fibers into extremely small structures, invisible to the naked eye, but with extraordinary characteristics such as being lightweight, strong, and biodegradable. A very promising source for obtaining nanocellulose are the Agave plants, widely used in the manufacture of tequila and mezcal. During the production of these spirits, residues such as leaves, and bagasse are generated and often discarded without further application. However, these residues contain cellulose, which can be transformed into nanocellulose through various approaches, including biological, mechanical, and chemical.

Cellulose nanomaterials obtained from Agaves have a great potential for reinforcing biodegradable plastics, making them stronger and more durable. These plastics can be used as packaging materials for food items and other products, offering an eco-friendly alternative to synthetic plastics, which take centuries to degrade. Utilizing nanocellulose from Agaves not only assists in the reduction of agro-industrial waste generated by the tequila and mezcal industries but also provides an opportunity to engineer sustainable materials that protect the environment. This nanomaterial is a prime example of how science can drive innovation, creating practical and environmentally friendly solutions for our planet.

Downloads

Download data is not yet available.

References

Alemán-Nava, G.S., Gatti, I.A., Parra-Saldivar, R., Dallemand, J.-F., Rittmann, B.E., e Iqbal, H.M.N. 2018. Biotechnological revalorization of Tequila waste and by-product streams for cleaner production – A review from bio-refinery perspective. Journal of Cleaner Production. 172:3713–3720. https://doi.org/10.1016/j.jclepro.2017.07.134 DOI: https://doi.org/10.1016/j.jclepro.2017.07.134

Álvarez-Chávez, J., Villamiel, M., Santos-Zea, L., y Ramírez-Jiménez, A.K. 2021. Agave by-products: an overview of their nutraceutical value, current applications, and processing methods. Polysaccharides. 2(3):720–743. https://doi.org/10.3390/polysaccharides2030044 DOI: https://doi.org/10.3390/polysaccharides2030044

Alvarez-Zeferino, J.C., Ojeda-Benítez, S., Cruz-Salas, A.A., Martínez-Salvador, C., y Vázquez-Morillas, A. 2020. Microplastics in mexican beaches. Resources, Conservation and Recycling. 155:104633. https://doi.org/10.1016/j.resconrec.2019.104633 DOI: https://doi.org/10.1016/j.resconrec.2019.104633

Avila-Galván, A.M., Morales-Castro, J., Ruíz-Leza, H.A., Manzanares-Meza, O.A., Morales-Contreras, B.E., Inés Guerra-Rosas, M., y Rosas-Flores, W. 2024. La segunda vida del agave: nuevas aplicaciones para residuos agroindustriales de las industrias del tequila y mezcal. Frontera Biotecnológica. 2:34–43.

Cazón, P., y Vázquez, M. 2021. Bacterial cellulose as a biodegradable food packaging material: A review. Food Hydrocolloids. 113:106530. https://doi.org/10.1016/j.foodhyd.2020.106530 DOI: https://doi.org/10.1016/j.foodhyd.2020.106530

Cazón, P., Velazquez, G., Ramírez, J.A., y Vázquez, M. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids. 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009 DOI: https://doi.org/10.1016/j.foodhyd.2016.09.009

Chávez-Guerrero, L., Sepúlveda-Guzmán, S., Rodríguez-Liñan, C., Silva-Mendoza, J., García-Gómez, N., y Pérez-Camacho, O. 2017. Isolation and characterization of cellulose nanoplatelets from the parenchyma cells of Agave salmiana. Cellulose. 24:3741–3752. https://doi.org/10.1007/s10570-017-1376-9 DOI: https://doi.org/10.1007/s10570-017-1376-9

Consejo Mexicano Regulador de la Calidad del Mezcal (COMERCAM) A. C. 2022. Informe Estadístico 2022. In: https://comercam-dom.org.mx/estadisticas/ (Fecha de consulta: 29 diciembre 2022).

Consejo Regulador del Tequila (CRT). 2022. Producción total: Tequila. In: https://www.crt.org.mx/EstadisticasCRTweb/ (Fecha de consulta: 29 diciembre 2022).

Flores-Méndez, D.A., Pelayo-Ortiz, C., Martínez Gómez, Á. de J., Toriz, G., Guatemala-Morales, G.M., y Corona-González, R.I. 2023. Evaluation of Agave tequilana by-products for microbial production of hyaluronic acid. Bioresource Technology Reports. 21:101366. https://doi.org/10.1016/j.biteb.2023.101366 DOI: https://doi.org/10.1016/j.biteb.2023.101366

Gajanan, K., y Tijare, S.N. 2018. Applications of nanomaterials. Materials Today: Proceedings. 5(1):1093–1096. https://doi.org/https://doi.org/10.1016/j.matpr.2017.11.187 DOI: https://doi.org/10.1016/j.matpr.2017.11.187

Garavand, F., Rouhi, M., Razavi, S.H., Cacciotti, I., y Mohammadi, R. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules. 104:687–707. https://doi.org/10.1016/j.ijbiomac.2017.06.093 DOI: https://doi.org/10.1016/j.ijbiomac.2017.06.093

García-Villalba, W.G., Rodríguez-Herrera, R., Ochoa-Martínez, L.A., Rutiaga-Quiñones, O.M., López, M.G., Gallegos-Infante, J.A., Bermúdez-Quiñones, G., y González-Herrera, S.M. 2023. Comparative study of four extraction methods of fructans (agavins) from Agave durangensis: Heat treatment, ultrasound, microwave and simultaneous ultrasound-microwave. Food Chemistry. 415:135767. https://doi.org/10.1016/j.foodchem.2023.135767 DOI: https://doi.org/10.1016/j.foodchem.2023.135767

Gutiérrez-Hernández, J.M., Escalante, A., Murillo-Vázquez, R.N., Delgado, E., González, F.J., y Toríz, G. 2016. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. Journal of Photochemistry and Photobiology B: Biology. 163:156–161. https://doi.org/10.1016/j.jphotobiol.2016.08.027 DOI: https://doi.org/10.1016/j.jphotobiol.2016.08.027

Hernández, J., Romero, V., Escalante, A., Toríz, G., Rojas, O.J., y Sulbarán, B. 2018. Agave tequilana bagasse as source of cellulose nanocrystals via organosolv treatment. BioResources. 13(2):3603–3614. https://doi.org/10.15376/biores.13.2.3603-3614 DOI: https://doi.org/10.15376/biores.13.2.3603-3614

Hernández-Varela, J.D., Chanona-Pérez, J.J., Calderón Benavides, H.A., Cervantes Sodi, F., y Vicente-Flores, M. 2021. Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydrate Polymers. 255:117347. https://doi.org/10.1016/j.carbpol.2020.117347 DOI: https://doi.org/10.1016/j.carbpol.2020.117347

Huitron, C., Perez, R., Sanchez, A.E., Lappe, P., y Rocha Zavaleta, L. 2008. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes. Journal of Environmental Biology. 29(1):37-41.

Jiménez-Ortega, L.A., Valdez-Baro, O., Bernal-Millán, M.J., Rivera-Salas, M.M., y Basilio Heredia, J. 2024. Agave byproducts: As sources of phytochemicals with functional activities and their management for industrial applications. 385–416 pp. In: Gómez-García, R., Vilas-Boas, A.A., Campos, D.A., Pintado, M.M., y Aguilar, C.N. (Ed. (s)). Food byproducts management and their utilization. Apple Academic Press. New York, NY, USA. 520 p. DOI: https://doi.org/10.1201/9781003377801-19

Krishnadev, P., Subramanian, K.S., Lakshmanan, A., Ganapathy, S., Raja, K., y Rajkishore, S.K. 2021. Hydroxypropyl methylcellulose nanocomposites containing nano fibrillated cellulose (NFC) from Agave americana L. for food packaging applications. BioResources. 16(4):8125–8151. https://doi.org/10.15376/biores.16.4.8125-8151 DOI: https://doi.org/10.15376/biores.16.4.8125-8151

Lomelí-Ramírez, M.G., Valdez-Fausto, E.M., Rentería-Urquiza, M., Jiménez-Amezcua, R.M., Anzaldo Hernández, J., Torres-Rendon, J.G., y García Enriquez, S. 2018. Study of green nanocomposites based on corn starch and cellulose nanofibrils from Agave tequilana Weber. Carbohydrate Polymers. 201:9–19. https://doi.org/10.1016/j.carbpol.2018.08.045 DOI: https://doi.org/10.1016/j.carbpol.2018.08.045

Manzanares-Meza, O.A. 2021. Properties of pectin-based films with SiO2 and corn starch during storage at different temperature. Tesis de Maestría. Instituto Tecnológico y de Estudios Superiores de Monterrey. Monterrey, Nuevo León, México. 171 p. https://hdl.handle.net/11285/641221

Márquez-Rangel, I., Cruz, M., Ruiz, H.A., Rodríguez-Jasso, R.M., Loredo, A., y Belmares, R. 2023. Agave waste as a source of prebiotic polymers: Technological applications in food and their beneficial health effect. Food Bioscience. 56:103102. https://doi.org/10.1016/j.fbio.2023.103102 DOI: https://doi.org/10.1016/j.fbio.2023.103102

Matiacevich, S., Soto Madrid, D., y Gutiérrez Cutiño, M. 2023. Economía circular: obtención y encapsulación de compuestos polifenólicos provenientes de residuos agroindustriales. Revista Iberoamericana de Viticultura, Agroindustria y Ruralidad. 10(28):77–100. https://doi.org/10.35588/rivar.v10i28.5343 DOI: https://doi.org/10.35588/rivar.v10i28.5343

Mezcal Burrito Fiestero. 2019. Another day, another batch of Mezcal Burrito Fiestero ready to travel around the world. In: https://www.facebook.com/MezcalBurrito/photos/pb.100063456551050.-2207520000/1418018458366748/?type=3 (Fecha de consulta: 7 enero 2025).

Montes de Oca-Vásquez, G., Esquivel-Alfaro, M., Vega-Baudrit, J.R., Jiménez-Villalta, G., Romero-Arellano, V.H., y Sulbarán-Rangel, B. 2023. Development of nanocomposite chitosan films with antimicrobial activity from agave bagasse and shrimp shells. Journal of Agriculture and Food Research. 14:100759. https://doi.org/10.1016/j.jafr.2023.100759 DOI: https://doi.org/10.1016/j.jafr.2023.100759

Morales-Castro, J., Muy-Rangel, M.D., A., O.-M.L., Morales-Contreras, B.E., y Guerra-Rosas, M.I. 2018. Desperdicio alimentario y subproductos agroindustriales en el marco de la Bioeconomía y Economía Circular: hacia sistemas alimentarios sostenibles. 1–35 pp. In: González-Aguilar, G., Hernández-Mendoza, A., Milán-Carrillo, J., Vallejo-Córdoba, B., y González-Córdoba, A.F. (Ed.(s)). Aprovechamiento de subproductos de la industria alimentaria para la obtención de compuestos bioactivos. AGT Editor. Distrito Federal, México. 806 p.

Olvera Carranza, C., Ávila Fernandez, A., Bustillo Armendáriz, G.R., y López-Munguía, A. 2015. Processing of fructans and oligosaccharides from Agave plants. 121–129 pp. In: Preedy, V. (Ed.). Processing and impact on active components in food. Academic press. San Diego, CA, USA. 699 p. https://doi.org/10.1016/B978-0-12-404699-3.00015-9 DOI: https://doi.org/10.1016/B978-0-12-404699-3.00015-9

Páez-Lerma, J.B., Arias-García, A., Rutiaga-Quiñones, O.M., Barrio, E., y Soto-Cruz, N.O. 2013. Yeasts isolated from the alcoholic fermentation of Agave duranguensis during mezcal production. Food Biotechnology. 27(4):342–356. https://doi.org/10.1080/08905436.2013.840788 DOI: https://doi.org/10.1080/08905436.2013.840788

Palacios Hinestroza, H., Hernández Diaz, J.A., Esquivel Alfaro, M., Toriz, G., Rojas, O.J., y Sulbarán-Rangel, B.C. 2019. Isolation and characterization of nanofibrillar cellulose from Agave tequilana Weber bagasse. Advances in Materials Science and Engineering. 2019(1). https://doi.org/10.1155/2019/1342547 DOI: https://doi.org/10.1155/2019/1342547

Peña-Reyes, V.L., Marin-Bustamante, M.Q., Manzo-Robledo, A., Chanona-Pérez, J.J., Cásarez-Santiago, R.G., y Suarez-Najera, E. 2017. Effect of crosslinking of alginate / pva and chitosan / pva, reinforced with cellulose nanoparticles obtained from agave Atrovirens karw. Procedia Engineering. 200:434–439. https://doi.org/10.1016/j.proeng.2017.07.061 DOI: https://doi.org/10.1016/j.proeng.2017.07.061

Ponce-Reyes, C.E., Chanona-Pérez, J.J., Garibay-Febles, V., Palacios-González, E., Karamath, J., Terrés-Rojas, E., y Calderón-Domínguez, G. 2014. Preparation of cellulose nanoparticles from Agave waste and its morphological and structural characterization. Revista mexicana de ingeniería química. 13(3):897–906.

Robles, E., Fernández-Rodríguez, J., Barbosa, A.M., Gordobil, O., Carreño, N.L.V., y Labidi, J. 2018. Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydrate Polymers. 183:294–302. https://doi.org/10.1016/j.carbpol.2018.01.015 DOI: https://doi.org/10.1016/j.carbpol.2018.01.015

Rosli, N.A., Ahmad, I., y Abdullah, I. 2013. Isolation and characterization of cellulose nanocrystals from agave angustifolia fibre. BioResources. 8(2):1893–1908. https://doi.org/10.15376/biores.8.2.1893-1908 DOI: https://doi.org/10.15376/biores.8.2.1893-1908

Rosli, N.A., Wan Ishak, W.H., Darwin, S.S., Ahmad, I., y Mohd Khairudin, M.F.A. 2021. Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced Agave cellulose nanocrystals. BioResources. 16(3):5538–5555. https://doi.org/10.15376/biores.16.3.5538-5555 DOI: https://doi.org/10.15376/biores.16.3.5538-5555

Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA). 2023. Panorama del sector agrícola. In: https://dj.senasica.gob.mx/SIAS/Statistics/Transversal/PanoramaAgricola (Fecha de consulta: 11 abril 2025).

Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA). 2016. Un regalo de los Dioses: el agave. In: https://www.gob.mx/senasica/articulos/un-regalo-de-los-dioses-el-agave (Fecha de consulta: 18 agosto 2024).

Shiva, Rodríguez-Jasso, R.M., López-Sandin, I., Aguilar, M.A., López-Badillo, C.M., y Ruiz, H.A. 2023. Intensification of enzymatic saccharification at high solid loading of pretreated agave bagasse at bioreactor scale. Journal of Environmental Chemical Engineering. 11(1):109257. https://doi.org/10.1016/j.jece.2022.109257 DOI: https://doi.org/10.1016/j.jece.2022.109257

Syafri, E., Jamaluddin, Sari, N.H., Mahardika, M., Amanda, P., y Ilyas, R.A. 2022. Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. International Journal of Biological Macromolecules. 200:25–33. https://doi.org/10.1016/j.ijbiomac.2021.12.111 DOI: https://doi.org/10.1016/j.ijbiomac.2021.12.111

Turbak, A.F., Snyder, F.W., y Sandberg, K.R. 1983. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. 815–827 pp. In: Sarko, A. (Ed.). Proceedings of the ninth cellulose conference, Applied Polymer Symposia. Wiley. New York, NY, USA.

Van Cauwenberghe, L., y Janssen, C.R. 2014. Microplastics in bivalves cultured for human consumption. Environmental Pollution. 193:65–70. https://doi.org/10.1016/j.envpol.2014.06.010 DOI: https://doi.org/10.1016/j.envpol.2014.06.010

Villanueva-Rodríguez, F., Hernández-Barrón, L.A., Hernández-Barrón, D. V, Caudillo-Díaz, T., Arteaga-Domínguez, M.D.S.C., Pérez-Escalón, E., Reyes-Gutiérrez, S.A., y Gutiérrez-Arenas, D.A. 2023. Fibra de agave como prebiótico sobre variables hematológicas en pollos de engorda. Jóvenes en la Ciencia. 21. http://repositorio.ugto.mx/handle/20.500.12059/9568

Yudhanto, F., Jamasri, j., Rochardjo, H.S.B., y Kusumaatmaja, A. 2021. Experimental study of polyvinyl alcohol nanocomposite film reinforced by cellulose nanofibers from Agave cantala. International Journal of Engineering. 34(4):987–998. https://doi.org/10.5829/ije.2021.34.04a.25 DOI: https://doi.org/10.5829/ije.2021.34.04a.25

Zevallos Torres, L.A., Lorenci Woiciechowski, A., de Andrade Tanobe, V.O., Karp, S.G., Guimarães Lorenci, L.C., Faulds, C., y Soccol, C.R. 2020. Lignin as a potential source of high-added value compounds: A review. Journal of Cleaner Production. 263:121499. https://doi.org/10.1016/j.jclepro.2020.121499 DOI: https://doi.org/10.1016/j.jclepro.2020.121499

Downloads

Published

2025-10-06

How to Cite

Agave Nanocellulose: : Rediscovering the Value of Ancestral Mexican Plants Beyond Tequila and Mezcal. (2025). Agraria, 22(3). https://doi.org/10.59741/agraria.v22i3.653

  PLUMX Metrics

Most read articles by the same author(s)